Micro-Scale Deformation Aspects of Additively Fabricated Stainless Steel 316L under Compression

Materials (Basel). 2024 Jan 17;17(2):439. doi: 10.3390/ma17020439.

Abstract

The deformation aspects associated with the micro-mechanical properties of the powder laser bed fusion (P-LBF) additively manufactured stainless steel 316L were investigated in the present work. Toward that, micro-pillars were fabricated on different planes of the stainless steel 316L specimen with respect to build direction, and an in situ compression was carried out inside the chamber of the scanning electron microscope (SEM). The results were compared against the compositionally similar stainless steel 316L, which was fabricated by a conventional method, that is, casting. The post-deformed micro-pillars on the both materials were examined by electron microscopy. The P-LBF processed steel exhibits equiaxed as well as elongated grains of different orientation with the characteristics of the melt-pool type arrangements. In contrast, the cast alloy shows typical circular-type grains in the presence of micro-twins. The yield stress and ultimate compressive stress of P-LBF fabricated steel were about 431.02 ± 15.51 - 474.44 ± 23.49 MPa and 547.78 ± 29.58 - 682.59 ± 21.59 MPa, respectively. Whereas for the cast alloy, it was about 322.38 ± 19.78 MPa and 477.11 ± 25.31 MPa, respectively. Thus, the outcome of this study signifies that the AM-processed samples possess higher mechanical properties than conventionally processed alloy of similar composition. Irrespective of the processing method, both specimens exhibit ductile-type deformation, which is typical for metallic alloys.

Keywords: additive manufacturing; in situ compression; laser powder bed fusion; micro-pillar; microstructure; stainless steel 316L.

Grants and funding

This research received no external funding.