The Design of PAN-Based Janus Membrane with Adjustable Asymmetric Wettability in Wastewater Purification

Materials (Basel). 2024 Jan 14;17(2):417. doi: 10.3390/ma17020417.

Abstract

In this paper, an environmentally friendly polyacrylonitrile-based (PAN-based) composite membrane with a Janus structure for wastewater treatment was successfully fabricated. To achieve the optimum adsorption of PAN-based Janus composite membrane, the asymmetric wettability was regulated through electrospinning, resulting in TiO2 modifying PAN as the hydrophilic substrate layer, and PCL gaining a different thickness as the hydrophobic layer. The prepared Janus composite membrane (PAN/TiO2-PCL20) showed excellent oil/water separation performance for diverse surfactant-stabilized oil-in-water emulsions. For n-hexane-in-water emulsion, the permeate flux and separation efficiency reached 1344 L m-2 h-1 and 99.52%, respectively. Even after 20 cycles of separation, it still had outstanding reusability and the separation efficiency remained above 99.15%. Meanwhile, the PAN/TiO2-PCL20 also exhibited an excellent photocatalytic activity, and the removal rate for RhB reached 93.2%. In addition, the research revealed that PAN/TiO2-PCL20 possessed good mechanical property and unidirectional water transfer capability. All results indicated that PAN/TiO2-PCL20 with photocatalysis and oil/water separation performance could be used for practical complex wastewater purification.

Keywords: Janus composite membrane; PCL; oil/water separation; photocatalysis.