Effects of Adsorption and Desorption of Low-Boiling-Point Total Hydrocarbon Gases on Activated Carbon

Materials (Basel). 2024 Jan 12;17(2):384. doi: 10.3390/ma17020384.

Abstract

In this study, we selected materials that efficiently adsorb total hydrocarbons (THCs) from petrochemical storage facilities and applied four types of activated carbons to adsorb THCs to evaluate their properties. Four gases with low boiling points, namely, ethylene, ethane, propylene, and propane, generated via petrochemical storage facilities, were selected and mixed to a constant concentration with four types of materials and used to investigate the adsorption capacities and desorption properties. The adsorbents comprised two raw materials and two chemically activated materials. The specific surface areas of activated palm (2085 m2/g) and coal (1752 m2/g), which are chemically activated carbons, exhibited a twofold increase compared to those of raw palm (1232 m2/g) and coal (946 m2/g). Thus, we identified the correlations between the physical properties of the activated carbon adsorption materials and their adsorption capacities for four low-boiling-point THCs generated by petrochemical storage facilities.

Keywords: activated carbon; low-boiling-point THCs gas; petrochemical storage; pore volume; surface area.