A Review on Chemical and Autogenous Shrinkage of Cementitious Systems

Materials (Basel). 2024 Jan 5;17(2):283. doi: 10.3390/ma17020283.

Abstract

Chemical shrinkage (CS) is an intrinsic parameter that may affect the early age cracking of paste, mortar and concrete. It is well known as the driving force of self-desiccation, autogenous shrinkage (AGS) and drying shrinkage. During the first stage of cement hydration (at the initial setting time), the CS and AGS are equal. In the hardened stages, there is a difference in values between the two shrinkage parameters. This paper is a comprehensive review on CS and AGS, measurement techniques, modeling and prediction of different cementitious systems. Based on the various experimental studies, chemical shrinkage depends on the water to binder ratio (w/b) and is proportional to the degree of hydration. A low w/b ratio leads to high CS and AGS. The composition of cement has an effect on both CS and AGS. Also, incorporating supplementary cementitious materials (SCMs) affects both shrinkage parameters. It is concluded that adding fly ash (FA) to concrete contributes to CS and AGS reductions. However, this is not the case when concrete contains slag. More than 170 references were consulted including 35 which were published after 2020. According to the authors knowledge, there is no published work on the effect of fibers, especially bio-fibers, on the chemical shrinkage of cement-based composites. Therefore, in addition to traditional chemical shrinkage of cementitious systems, this review includes a section on recent papers conducted by the authors on the effect of bio-fibers on the chemical shrinkage of cement composites.

Keywords: autogenous shrinkage; chemical shrinkage; mortar; paste.

Publication types

  • Review

Grants and funding

This research received no external funding.