Left Ventricular-Arterial Coupling as an Independent Predictor of Adverse Events in Young Patients with ST Elevation Myocardial Infarction-A 3D Echocardiographic Study

Biomedicines. 2024 Jan 4;12(1):105. doi: 10.3390/biomedicines12010105.

Abstract

Left ventricular-arterial coupling (VAC) is a key determinant of global cardiovascular performance, calculated as the ratio between arterial elastance (EA) and left ventricular end-systolic elastance (EES). Over the years, acute myocardial infarction (STEMI) has remained an important cause of morbidity and mortality worldwide. Although, until recently, it was considered a disease occurring mostly in older patients, its prevalence in the young population is continuously rising. In this study, we aimed to investigate the role of 3D VAC and its derived indices in predicting adverse outcomes in young patients with STEMI. We prospectively enrolled 84 young patients (18-51 years) with STEMI who underwent primary PCI and 28 healthy age and sex-matched controls. A 3D echocardiography was used for non-invasive measurements of end-systolic elastance (EES), arterial elastance (EA), and VAC (EA/EES). The occurrence of major adverse cardiac events (MACE) was assessed one year after the index STEMI. Out of 84 patients, 15.4% had adverse events at 12 months follow-up. Patients were divided into two groups according to the presence or absence of MACE. There were no significant differences in arterial elastance between the two groups. EA was higher in the MACE group but without statistical significance (2.65 vs. 2.33; p = 0.09). EES was significantly lower in the MACE group (1.25 ± 0.34 vs. 1.91 ± 0.56. p < 0.0001) and VAC was higher (2.2 ± 0.62 vs. 1.24 ± 0.29, p < 0.0001). ROC analysis showed that VAC has a better predictive value for MACE (AUC 0.927) compared with EA or EEA but also compared with a classical determinant of LV function (LVEF and LVGLS). A VAC value over 1.71 predicts unfavourable outcome with 83.3% sensitivity and 97.1% specificity. In both univariate and multivariate COX regression analysis, VAC remained an independent predictor for MACE and demonstrated incremental prognostic value over LVEF and LVGLS in the proposed statistical models. In conclusion, 3D VAC is an independent predictor of adverse events in young patients with STEMI at a 12 month follow-ups and could be used for a more accurate risk stratification in the acute phase.

Keywords: 3D echocardiography; MACE; STEMI; ventricular-arterial coupling.