Diselenophosphate Ligands as a Surface Engineering Tool in PdH-Doped Silver Superatomic Nanoclusters

Inorg Chem. 2024 Feb 5;63(5):2766-2775. doi: 10.1021/acs.inorgchem.3c04253. Epub 2024 Jan 22.

Abstract

The first hydride-doped Pd/Ag superatoms stabilized by selenolates are reported: [PdHAg19(dsep)12] [dsep = Se2P(OiPr)2] 1 and [PdHAg20(dsep)12]+ 2. 1 was derived from the targeted transformation of [PdHAg19(dtp)12] [dtp = S2P(OiPr)2] by ligand exchange, whereas 2 was obtained from the addition of trifluoroacetic acid to 1, resulting in a symmetric redistribution of the capping silver atoms. The transformations are all achieved while retaining an 8-electron superatomic configuration. VT-NMR attests to the good stability of the NCs in solution, and single-crystal X-ray diffraction reveals the crucial role that the interstitial hydride plays in directing the position of the capping silver atoms. The total structures are reported alongside their electronic and optical properties. 1 and 2 are phosphorescent with a lifetime of 73 and 84 μs at 77 K, respectively. The first antibacterial activity data for superatomic bimetallic Pd/Ag nanoclusters are also reported.