Crickets in the spotlight: exploring the impact of light on circadian behavior

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Mar;210(2):267-279. doi: 10.1007/s00359-023-01686-y. Epub 2024 Jan 22.

Abstract

Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.

Keywords: Gryllus bimaculatus; Artificial light at night (ALAN); Chronobiology; Circadian clock; Light pollution.

Publication types

  • Review

MeSH terms

  • Animals
  • Circadian Rhythm / physiology
  • Cricket Sport*
  • Gryllidae*
  • Locomotion
  • Neuropeptides* / metabolism
  • Optic Lobe, Nonmammalian / metabolism

Substances

  • Neuropeptides