Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation

Nanomicro Lett. 2024 Jan 22;16(1):94. doi: 10.1007/s40820-023-01302-3.

Abstract

Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL-1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g-1 at 5 and 100 mV s-1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.

Keywords: Anti-counterfeiting applications; Centrifugation-assisted rapid gelation; Lubrication; MXene; Supercapacitor.