What Is Fusarium Head Blight (FHB) Resistance and What Are Its Food Safety Risks in Wheat? Problems and Solutions-A Review

Toxins (Basel). 2024 Jan 8;16(1):31. doi: 10.3390/toxins16010031.

Abstract

The term "Fusarium Head Blight" (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily result from FHB, and even the genetic regulation of Fusarium spp. may differ; therefore, multitoxin contamination is common. The resistance types of FHB form a rather complex syndrome that has been the subject of debate for decades. It seems that resistance types are not independent variables but rather a series of components that follow disease and epidemic development; their genetic regulation may differ. Spraying inoculation (Type 1 resistance) includes the phase where spores land on palea and lemma and spread to the ovarium and also includes the spread-inhibiting resistance factor; therefore, it provides the overall resistance that is needed. A significant part of Type 1-resistant QTLs could, therefore, be Type 2, requiring the retesting of the QTLs; this is, at least, the case for the most effective ones. The updated resistance components are as follows: Component 1 is overall resistance, as discussed above; Component 2 includes spreading from the ovarium through the head, which is a part of Component 1; Component 3 includes factors from grain development to ripening (FDK); Component 4 includes factors influencing DON contamination, decrease, overproduction, and relative toxin resistance; and for Component 5, the tolerance has a low significance without new results. Independent QTLs with different functions can be identified for one or more traits. Resistance to different Fusarium spp. seems to be connected; it is species non-specific, but further research is necessary. Their toxin relations are unknown. DI, FDK, and DON should be checked as they serve as the basic data for the risk analysis of cultivars. A better understanding of the multitoxin risk is needed regarding resistance to the main Fusarium spp.; therefore, an updated testing methodology is suggested. This will provide more precise data for research, genetics, and variety registration. In winter and spring wheat, the existing resistance level is very high, close to Sumai 3, and provides much greater food safety combined with sophisticated fungicide preventive control and other practices in commercial production.

Keywords: FHB resistance testing methods; FHB variety registration; Fusarium-damaged kernels (FDK); common resistance; food safety; fusarium head blight; multitoxin contamination; resistance components; resistance to toxin accumulation.

Publication types

  • Review

MeSH terms

  • Disease Resistance*
  • Food Microbiology*
  • Fusarium*
  • Plant Diseases / microbiology
  • Triticum* / genetics
  • Triticum* / microbiology

Grants and funding

The author is thankful for the financial support of the EU project FP5, FUCOMYR QLRT-2000-02044, EU project FP7 MycoRed KBBE-2007-2-5-05, the Hungarian Government project GOP-1.1.1-11-2012-0159 and projects of Ministry for Innovation and Technology, TUDFO/51757/2019-ITM and TKP2020-NKA-21. The author is indebted to the Cereal Research non-profit Ltd. for partial financing of the research work.