Polyhexamethylene Guanidine Phosphate Enhanced Procoagulant Activity through Oxidative-Stress-Mediated Phosphatidylserine Exposure in Platelets

Toxics. 2024 Jan 8;12(1):50. doi: 10.3390/toxics12010050.

Abstract

Polyhexamethylene guanidine phosphate (PHMG-p) is a common biocidal disinfectant that is widely used in industry and household products. However, PHMG-p was misused as a humidifier disinfectant (HD) in South Korea, which had fatal health effects. Various health problems including cardiovascular diseases were observed in HD-exposed groups. However, the potential underlying mechanism of HD-associated cardiovascular diseases is poorly understood. Here, we examined the procoagulant activity of platelets caused by PHMG-p and clarified the underlying mechanism. PHMG-p enhanced phosphatidylserine (PS) exposure through alteration of phospholipid transporters, scramblase, and flippase. Intracellular calcium elevation, intracellular ATP depletion, and caspase-3 activation appeared to underlie phospholipid transporter dysregulation caused by PHMG-p, which was mediated by oxidative stress and mitochondrial dysfunction. Notably, antioxidant enzyme catalase and calcium chelator EGTA reversed PHMG-p-induced PS exposure and thrombin generation, confirming the contributive role of oxidative stress and intracellular calcium in the procoagulant effects of PHMG-p. These series of events led to procoagulant activation of platelets, which was revealed as enhanced thrombin generation. Collectively, PHMG-p triggered procoagulant activation of platelets, which may promote prothrombotic risks and cardiovascular diseases. These findings improve our understanding of HD-associated cardiovascular diseases.

Keywords: cardiovascular disease; humidifier disinfectant; phosphatidylserine (PS) exposure; platelets; polyhexamethylene guanidine phosphate (PHMG-p); procoagulant activation.