Modeling Supply and Demand Dynamics of Vaccines against Epidemic-Prone Pathogens: Case Study of Ebola Virus Disease

Vaccines (Basel). 2023 Dec 25;12(1):24. doi: 10.3390/vaccines12010024.

Abstract

Health emergencies caused by epidemic-prone pathogens (EPPs) have increased exponentially in recent decades. Although vaccines have proven beneficial, they are unavailable for many pathogens. Furthermore, achieving timely and equitable access to vaccines against EPPs is not trivial. It requires decision-makers to capture numerous interrelated factors across temporal and spatial scales, with significant uncertainties, variability, delays, and feedback loops that give rise to dynamic and unexpected behavior. Therefore, despite progress in filling R&D gaps, the path to licensure and the long-term viability of vaccines against EPPs continues to be unclear. This paper presents a quantitative system dynamics modeling framework to evaluate the long-term sustainability of vaccine supply under different vaccination strategies. Data from both literature and 50 expert interviews are used to model the supply and demand of a prototypical Ebolavirus Zaire (EBOV) vaccine. Specifically, the case study evaluates dynamics associated with proactive vaccination ahead of an outbreak of similar magnitude as the 2018-2020 epidemic in North Kivu, Democratic Republic of the Congo. The scenarios presented demonstrate how uncertainties (e.g., duration of vaccine-induced protection) and design criteria (e.g., priority geographies and groups, target coverage, frequency of boosters) lead to important tradeoffs across policy aims, public health outcomes, and feasibility (e.g., technical, operational, financial). With sufficient context and data, the framework provides a foundation to apply the model to a broad range of additional geographies and priority pathogens. Furthermore, the ability to identify leverage points for long-term preparedness offers directions for further research.

Keywords: Ebola Virus Disease; epidemics; filoviruses; immunization; infectious diseases; sustainability; system dynamics; vaccines.