Triple Synergism Effect of Ammonium Nitrilotriacetate on the Chemical Mechanical Polishing Performance of Ruthenium Barrier Layers

Small. 2024 Jan 21:e2309965. doi: 10.1002/smll.202309965. Online ahead of print.

Abstract

As the feature size of integrated circuits continues to decrease, ruthenium (Ru) has been suggested as the successor to traditional Ta/TaN bilayers for barrier layer materials due to its unique properties. This research delves into the effects of ammonium nitrilotriacetate (NTA(NH4 )3 ) on the chemical mechanical polishing (CMP) performance of Ru in H2 O2 -based slurry. The removal rate (RR) of Ru surged from 47 to 890 Å min-1 , marking an increase of about 17 times. The essence of this mechanism lies in the triple synergistic effects of NTA(NH4 )3 in promoting ruthenium (Ru) removal: 1) The interaction between NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4 )3 and SiO2 abrasives; 2) The chelating action of [(NH4 )N(CH2 COO)3 ]2- from NTA(NH4 )3 on Ru and its oxides; 3) The ammoniation and chelation of Ru and its oxides by NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4 )3 , which enhance the dissolution and corrosion of oxidized Ru, making its removal during the barrier layer CMP process more efficient through mechanical means. This research introduces a synergistic approach for the effective removal of Ru, shedding light on potential applications of CMP in the field of the integrated circuits.

Keywords: ammonium nitrilotriacetate; barrier layer; chelating agent; chemical mechanical polishing; triple synergistic effects.