Comparison of the physical, thermal, and biological effects on implant bone site when using either zirconia or stainless-steel drill for implant bone site preparation

J Formos Med Assoc. 2024 Jan 20:S0929-6646(24)00030-5. doi: 10.1016/j.jfma.2024.01.011. Online ahead of print.

Abstract

Background/purpose: Zirconia has been a popular material in dental implantology with good biocompatibility. But few research focused on its application in implant drills. This study aimed to investigate the physical, thermal, and biological effects on using the zirconia and stainless-steel drills for implant bone site preparation.

Methods: We performed a series of experiments to evaluate the physical wearing properties of zirconia and stainless-steel drills of identical diameter and similar shape. During the implant site preparation thermal test, we subjected both drills onto a resin-embedded bone, utilizing a thermal couple device without irrigation. Moreover, we conducted a cell study by collecting bone cells in vivo while preparing the implant site with both tested drills. The cell activity was evaluated through cell proliferation colorimetric analysis (XTT) and alkaline phosphatase (ALP) activity measurements.

Results: The zirconia drill outperforms the stainless-steel drill in terms of requiring less force, maintaining stability over repeated cutting tests, and generating lower temperatures during drilling (stainless-steel drill: 45.48 ± 1.31 °C; zirconia-coated drill: 32.98 ± 1.21 °C, P = 0.000247). Meanwhile, both types of drills show similar results in XTT colorimetric analysis and ALP activity test.

Conclusion: The thermal effect study is more favorable for using the zirconia drill than the stainless-steel drill for bone preparation. Cytological analysis indicate that the zirconia drill produces a similar impact on bone cells activity as the stainless-steel drill. Therefore, we conclude that the zirconia drills offer a good cutting effect similar to currently available stainless-steel drills in various aspects.