Effects of intensive oyster farming on nitrogen speciation in surface sediments from a typical subtropical mariculture bay

Sci Total Environ. 2024 Mar 15:916:170092. doi: 10.1016/j.scitotenv.2024.170092. Epub 2024 Jan 19.

Abstract

The spatial-temporal distributions of various nitrogen (N) species in surface sediments were examined in a typical subtropical mariculture bay (Maowei Sea) in the northern Beibu Gulf to assess the impact of intensive oyster culture activities on sedimentary N speciation. The results indicated that the mean contents of total nitrogen (TN), extractable (labile) nitrogen (LN) and residual nitrogen (RN) in the surface sediments were 33.3 ± 15.5 μmol g-1, 13.8 ± 1.3 μmol g-1 and 19.5 ± 15.0 μmol g-1, respectively, which lacked significant seasonal variability (P > 0.05). Four forms of LN, namely ion extractable form (IEF-N), weak acid extractable form (WAEF-N), strong alkali extractable form (SAEF-N) and strong oxidant extractable form (SOEF-N) were identified based on sequential extraction. SOEF-N was the dominant form of LN, accounting for 67.8 ± 2.5 % and 63.7 ± 5.9 % in summer and winter, respectively. Spatially, the contents of sedimentary TN, LN, RN, WAEF-N and SOEF-N in intensive mariculture areas (IMA) were significantly higher than those in non-intensive mariculture areas (NIMA) during summer (P < 0.05). Stable nitrogen isotope (δ15N) mixing model revealed that shellfish biodeposition was the predominant source of sedimentary TN in IMA with a contribution of 67.8 ± 23.0 %, approximately 5.4 times that of NIMA (12.6 ± 3.3 %). Significant positive correlations (P < 0.05) were observed between most forms of N species (WAEF-N, SOEF-N, LN and RN) and shellfish-biodeposited N in the surface sediments during summer, indicating that intensive oyster farming greatly enhanced sedimentary TN accumulation.

Keywords: Maowei Sea; Nitrogen speciation; Oyster farming; Stable nitrogen isotope; Surface sediments.

MeSH terms

  • Agriculture
  • Animals
  • Bays
  • China
  • Environmental Monitoring
  • Geologic Sediments
  • Nitrogen / analysis
  • Ostreidae*
  • Water Pollutants, Chemical* / analysis

Substances

  • Nitrogen
  • Water Pollutants, Chemical