Remote sensing retrieval and driving analysis of phytoplankton density in the large storage freshwater lake: A study based on random forest and Landsat-8 OLI

J Contam Hydrol. 2024 Feb:261:104304. doi: 10.1016/j.jconhyd.2024.104304. Epub 2024 Jan 17.

Abstract

Remote sensing monitoring of seasonal changes in phytoplankton density and analyses of the driving factors of phytoplankton densities are necessary for assessing the health of aquatic ecosystems, controlling lake eutrophication, and formulating ecological restoration policies. Building upon the satellite-ground synchronization experiment that involves the in situ aquatic ecological monitoring conducted in Nansi Lake, which is the largest storage lake situated along the eastern route of the South-to-North Water Diversion Project, we developed a phytoplankton density retrieval model utilizing the random forest (RF) method and Landsat-8 OLI data. On this basis, we mapped the seasonal fluctuations and spatial disparities in the phytoplankton densities from 2013 to 2023. Subsequently, we conducted a detailed analysis of the driving factors and considered both the natural and anthropogenic aspects. The results indicate that (1) the RF model, when utilizing three band combinations, yielded favorable results with R2, RMSE and MAE values of 0.67, 1.31 × 106 cells/L and 1.18 × 106 cells/L, respectively. (2) The phytoplankton densities exhibited both seasonal and spatial variations, with higher concentrations in summer and autumn than in spring and winter. Significantly, the northwestern region of Zhaoyang Lake and the southeastern region of Weishan Lake had substantially greater phytoplankton densities than did the other areas. Furthermore, overarching upward trends were observed from 2013 to 2023, reflecting an annual rate of increase of 3.32%. (3) An analysis of the causal factors indicated that temperatures and gross agricultural production levels are the primary drivers influencing the seasonal variations and distributions of phytoplankton densities. In the future, we will delve into the potential of deep learning and utilize various satellite sensors to explore the intricacies of phytoplankton monitoring, as well as the complex mechanisms that influence aquatic ecological health.

Keywords: Aquatic ecological health; Cause analysis; Machine learning; Phytoplankton density.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Ecosystem
  • Environmental Monitoring / methods
  • Lakes* / analysis
  • Phytoplankton*
  • Random Forest
  • Remote Sensing Technology