Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines

Mol Ther. 2024 Mar 6;32(3):704-721. doi: 10.1016/j.ymthe.2024.01.020. Epub 2024 Jan 18.

Abstract

mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.

Keywords: STING; antigen presentation; cancer immunotherapy; lipid nanoparticle; type-I interferon.

MeSH terms

  • Animals
  • Cancer Vaccines*
  • Dendritic Cells
  • Humans
  • Immunity, Innate
  • Interferons / metabolism
  • Lymph Nodes
  • Macrophages
  • Mice
  • mRNA Vaccines*

Substances

  • mRNA Vaccines
  • Cancer Vaccines
  • Interferons