A simple and efficient in planta transformation method based on the active regeneration capacity of plants

Plant Commun. 2024 Apr 8;5(4):100822. doi: 10.1016/j.xplc.2024.100822. Epub 2024 Jan 18.

Abstract

Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants. However, the complicated operational protocols and low efficiency of current transformation strategies restrict the genetic modification of most plant species. This paper describes the development of the regenerative activity-dependent in planta injection delivery (RAPID) method based on the active regeneration capacity of plants. In this method, Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues. Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues. The method was successfully used for transformation of plants with strong regeneration capacity, including different genotypes of sweet potato (Ipomoea batatas), potato (Solanum tuberosum), and bayhops (Ipomoea pes-caprae). Compared with traditional transformation methods, RAPID has a much higher transformation efficiency and shorter duration, and it does not require tissue culture procedures. The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.

Keywords: RAPID; active regeneration; bayhops; plant genetic transformation; potato; sweet potato.

MeSH terms

  • Agrobacterium tumefaciens* / genetics
  • Ipomoea batatas* / genetics
  • Plants, Genetically Modified / genetics