Interplay of decoherence and relaxation in a two-level system interacting with an infinite-temperature reservoir

Phys Rev E. 2023 Dec;108(6-1):064133. doi: 10.1103/PhysRevE.108.064133.

Abstract

We study the time evolution of a single qubit in contact with a bath, within the framework of projection operator methods. Employing the so-called modified Redfield theory, which also treats energy conserving interactions nonperturbatively, we are able to study the regime beyond the scope of the ordinary approach. Reduced equations of motion for the qubit are derived in an idealistic system where both the bath and system-bath interactions are modeled by Gaussian distributed random matrices. In the strong decoherence regime, a simple relation between the bath correlation function and the decoherence process induced by the energy conserving interaction is found. It implies that energy conserving interactions slow down the relaxation process, which leads to a Zeno freezing if they are sufficiently strong. Furthermore, our results are also confirmed in numerical simulations.