Measuring structural nonstationarity: The use of imaging information to quantify homogeneity and inhomogeneity

Phys Rev E. 2023 Dec;108(6-1):064128. doi: 10.1103/PhysRevE.108.064128.

Abstract

Heterogeneity is the concept we encounter in numerous research areas and everyday life. While "not mixing apples and oranges" is easy to grasp, a more quantitative approach to such segregation is not always readily available. Consider the problem from a different angle: To what extent does one have to make apples more orange and oranges more "apple-shaped" to put them into the same basket (according to their appearance alone)? This question highlights the central problem of the blurred interface between heterogeneous and homogeneous, which also depends on the metrics used for its identification. This work uncovers the physics of structural stationarity quantification, based on correlation functions (CFs) and clustering based on CFs different between image subregions. By applying the methodology to a wide variety of synthetic and real images of binary porous media, we confirmed computationally that only periodically unit-celled structures and images produced by stationary processes with resolutions close to infinity are strictly stationary. Natural structures without recurring unit cells are only weakly stationary. We established a physically meaningful definition for these stationarity types and their distinction from nonstationarity. In addition, the importance of information content of the chosen metrics is highlighted and discussed. We believe the methodology as proposed in this contribution will find its way into numerous research areas dealing with materials, structures, and measurements and modeling based on structural imaging information.