The immunity and redox clocks in mice, markers of lifespan

Sci Rep. 2024 Jan 19;14(1):1703. doi: 10.1038/s41598-024-51978-9.

Abstract

Immune function and redox markers are used for estimating the aging rate, namely biological age (BA). However, it is unknown if this BA and its changes can be reflected in longevity. Thus, we must quantify BA in experimental animals. In peritoneal immune cells of 202 female mice (ICR/CD1) in different ages, 10 immune and 6 redox parameters were evaluated to construct two mathematical models for BA quantification in mice by multiple linear regression. Immune and redox parameters were selected as independent variables and chronological age as dependent, developing two models: the Immunity and the Redox Clocks, reaching both an adjusted R2 of 80.9% and a standard error of 6.38 and 8.57 weeks, respectively. Both models were validated in a different group of healthy mice obtaining a Pearson's correlation coefficient of 0.844 and 0.800 (p < 0.001) between chronological and BA. Furthermore, they were applied to adult prematurely aging mice, which showed a higher BA than non-prematurely aging mice. Moreover, after positive and negative lifestyle interventions, mice showed a lower and higher BA, respectively, than their age-matched controls. In conclusion, the Immunity and Redox Clocks allow BA quantification in mice and both the ImmunolAge and RedoxAge in mice relate to lifespan.

MeSH terms

  • Aging
  • Aging, Premature*
  • Animals
  • Female
  • Longevity*
  • Mice
  • Mice, Inbred ICR
  • Oxidation-Reduction