Mechanisms of Cardiovascular Toxicities Induced by Cancer Therapies and Promising Biomarkers for Their Prediction: A Scoping Review

Heart Lung Circ. 2024 Jan 18:S1443-9506(23)04464-5. doi: 10.1016/j.hlc.2023.12.006. Online ahead of print.

Abstract

Aim: With the advancement of anti-cancer medicine, cardiovascular toxicities due to cancer therapies are common in oncology patients, resulting in increased mortality and economic burden. Cardiovascular toxicities caused by cancer therapies include different severities of cardiomyopathy, arrhythmia, myocardial ischaemia, hypertension, and thrombosis, which may lead to left ventricular dysfunction and heart failure. This scoping review aimed to summarise the mechanisms of cardiovascular toxicities following various anti-cancer treatments and potential predictive biomarkers for early detection.

Methods: PubMed, Cochrane, Embase, Web of Science, Scopus, and CINAHL databases were searched for original studies written in English related to the mechanisms of cardiovascular toxicity induced by anti-cancer therapies, including chemotherapy, targeted therapy, immunotherapy, radiation therapy, and relevant biomarkers. The search and title/abstract screening were conducted independently by two reviewers, and the final analysed full texts achieved the consensus of the two reviewers.

Results: A total of 240 studies were identified based on their titles and abstracts. In total, 107 full-text articles were included in the analysis. Cardiomyocyte and endothelial cell apoptosis caused by oxidative stress injury, activation of cell apoptosis, blocking of normal cardiovascular protection signalling pathways, overactivation of immune cells, and myocardial remodelling were the main mechanisms. Promising biomarkers for anti-cancer therapies related to cardiovascular toxicity included placental growth factor, microRNAs, galectin-3, and myeloperoxidase for the early detection of cardiovascular toxicity.

Conclusion: Understanding the mechanisms of cardiovascular toxicity following various anti-cancer treatments could provide implications for future personalised treatment methods to protect cardiovascular function. Furthermore, specific early sensitive and stable biomarkers of cardiovascular system damage need to be identified to predict reversible damage to the cardiovascular system and improve the effects of anti-cancer agents.

Keywords: Biomarker; Cardio-oncology; Cardiovascular toxicity; Mechanism.