The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants

Otol Neurotol. 2024 Mar 1;45(3):238-244. doi: 10.1097/MAO.0000000000004080.

Abstract

Background: The shape and position of cochlear implant electrodes could potentially influence speech perception, as this determines the proximity of implant electrodes to the spiral ganglion. However, the literature to date reveals no consistent association between speech perception and either the proximity of electrode to the medial cochlear wall or the depth of insertion. These relationships were explored in a group of implant recipients receiving the same precurved electrode.

Methods: This was a retrospective study of adults who underwent cochlear implantation with Cochlear Ltd.'s Slim Perimodiolar electrode at the Royal Victorian Eye and Ear Hospital between 2015 and 2018 (n = 52). Postoperative images were obtained using cone beam computed tomography (CBCT) and analyzed by multi-planar reconstruction to identify the position of the electrode contacts within the cochlea, including estimates of the proximity of the electrodes to the medial cochlear wall or modiolus and the angular depth of insertion. Consonant-vowel-consonant (CVC) monosyllabic phonemes were determined preoperatively, and at 3 and 12 months postoperatively. Electrically evoked compound action potential (ECAP) thresholds and impedance were measured from the implant array immediately after implantation. The relationships between electrode position and speech perception, electrode impedance, and ECAP threshold were an analyzed by Pearson correlation.

Results: Age had a negative impact on speech perception at 3 months but not 12 months. None of the electrode-wide measures of proximity between electrode contacts and the modiolus, nor measures of proximity to the medial cochlear wall, nor the angular depth of insertion of the most apical electrode correlated with speech perception. However, there was a moderate correlation between speech perception and the position of the most basal electrode contacts; poorer speech perception was associated with a greater distance to the modiolus. ECAP thresholds were inversely related to the distance between electrode contacts and the modiolus, but there was no clear association between this distance and impedance.

Conclusions: Speech perception was significantly affected by the proximity of the most basal electrodes to the modiolus, suggesting that positioning of these electrodes may be important for optimizing speech perception. ECAP thresholds might provide an indication of this proximity, allowing for its optimization during surgery.

MeSH terms

  • Adult
  • Cochlea / diagnostic imaging
  • Cochlea / surgery
  • Cochlear Implantation* / methods
  • Cochlear Implants*
  • Evoked Potentials
  • Humans
  • Infant
  • Retrospective Studies