The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators

Evol Dev. 2024 Mar;26(2):e12469. doi: 10.1111/ede.12469. Epub 2024 Jan 18.

Abstract

Cnidarians-the phylum including sea anemones, corals, jellyfish, and hydroids-are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time-calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654-574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.

Keywords: Precambrian; animal origins; cnidarians; cnidocyte; evolution of carnivory.

MeSH terms

  • Animals
  • Scyphozoa*
  • Sea Anemones*