Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm

Mol Ecol. 2024 Mar;33(5):e17269. doi: 10.1111/mec.17269. Epub 2024 Jan 18.

Abstract

Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.

Keywords: ectotherm; painted turtle; population genomics; range expansion; surfing.

MeSH terms

  • Animals
  • Demography
  • Genome*
  • Genomics*
  • Selection, Genetic
  • Vertebrates / genetics