Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study

Biomater Adv. 2024 Apr:158:213766. doi: 10.1016/j.bioadv.2024.213766. Epub 2024 Jan 12.

Abstract

Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.

Keywords: 2D and 3D substrate; Antibacterial; Biocompatible; Co-culture; Nanostructures.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Bacteria
  • Bacterial Adhesion*
  • Coculture Techniques
  • Surface Properties
  • Titanium* / pharmacology

Substances

  • Titanium
  • Anti-Bacterial Agents