Continuous Flow System for Highly Efficient and Durable Photocatalytic Oxidative Coupling of Methane

J Am Chem Soc. 2024 Jan 31;146(4):2465-2473. doi: 10.1021/jacs.3c10069. Epub 2024 Jan 17.

Abstract

Photocatalytic oxidative coupling of methane (OCM) into value-added industrial chemicals offers an appealing green technique for achieving sustainable development, whereas it encounters double bottlenecks in relatively low methane conversion rate and severe overoxidation. Herein, we engineer a continuous gas flow system to achieve efficient photocatalytic OCM while suppressing overoxidation by synergizing the moderate active oxygen species, surface plasmon-mediated polarization, and multipoint gas intake flow reactor. Particularly, a remarkable CH4 conversion rate of 218.2 μmol h-1 with an excellent selectivity of ∼90% toward C2+ hydrocarbons and a remarkable stability over 240 h is achieved over a designed Au/TiO2 photocatalyst in our continuous gas flow system with a homemade three-dimensional (3D) printed flow reactor. This work provides an informative concept to engineer a high-performance flow system for photocatalytic OCM by synergizing the design of the reactor and photocatalyst to synchronously regulate the mass transfer, activation of reactants, and inhibition of overoxidation.