Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough

Foods. 2023 Dec 4;12(23):4367. doi: 10.3390/foods12234367.

Abstract

With the increasing number of people affected by gluten consumption-related diseases, adhering to a gluten-free (GF) diet is the most effective preventive measure. Herein, we aimed to isolate and characterize the functional properties of autochthonous lactic acid bacteria (LAB) and yeast from various GF sourdoughs to determine their suitability in starter cultures for sourdough preparation. Three LAB, Weissella confusa BAQ2, Lactobacillus brevis AQ2, Leuconostoc citreum YC2, and Saccharomyces cerevisiae BW1, were identified. The isolated LAB exhibited greater TTA, faster acidification rates, and higher acid tolerance than commercial LAB. W. confusa BAQ2 exhibited the highest EPS production, W. confusa BAQ2 and L. brevis AQ2 showed high maltose utilization, and S. cerevisiae BW1 exhibited the highest CO2 production rate. Accordingly, all four microbial strains were mixed for the starter culture. The sourdough prepared with starter cultures exhibited differences in gas production depending on fermentation time, which influenced the volume of GF bread dough. GF bread prepared with fermented sourdough exhibited a 16% higher specific volume and enhanced crumb firmness and elasticity than that prepared using non-fermented sourdough. Thus, autochthonous LAB strains isolated from various GF sourdoughs can be used together to improve the quality of sourdough bread, demonstrating their potential for use in starter cultures for GF sourdough production.

Keywords: gluten-free grains; gluten-free sourdough bread; lactic acid bacteria; starter culture; yeast.