Post-Harvest Atmospheric Pressure and Composition Modify the Concentration and Bioaccessibility of α- and β-Carotene in Carrots and Sweet Potatoes

Foods. 2023 Nov 25;12(23):4262. doi: 10.3390/foods12234262.

Abstract

Provitamin A (proVA) carotenoid synthesis and degradation are strongly influenced by environmental factors, including during post-harvest storage. Hypobaric and hyperbaric storages increase the shelf-life of many crops, but their effects on proVA carotenoids are not known. Our aim was to investigate the effects of modifications of atmospheric pressure and composition on α- and β-carotene concentration and bioaccessibility during the post-harvest storage of carrots and sweet potatoes. Vegetables were stored for 11-14 days at 20 °C in the dark in chambers with modified pressure and O2 concentrations. In carrots, α- and β-carotene concentrations increased significantly during storage, but compared to the control, they were significantly lower in hyperbaria (-23 and -26%, respectively), whereas they did not differ significantly in hypoxia and hypobaria. In sweet potatoes, α- and β-carotene concentrations decreased significantly during storage, but neither hypoxia, hypobaria nor hyperbaria led to any significant change compared to the control. There was a significant increase for carrot α- and β-carotene bioaccessibility in hypobaria and hyperbaria, while there was a significant decrease for sweet potato β-carotene bioaccessibility in hypobaria/hypoxia and normobaria/hypoxia (-45% and -65% vs. control, respectively). Atmospheric pressure and composition during the post-harvest storage of carrots and sweet potatoes modified the concentration and bioaccessibility of proVA carotenoids.

Keywords: bioavailability; carotenoids; food matrix; process; vitamin A.

Grants and funding

The costs of this project were covered equally by the institutional budget of the P.B. and C.D. research group.