Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation

Foods. 2023 Nov 28;12(23):4295. doi: 10.3390/foods12234295.

Abstract

The aim of this study was to examine the potential enhancement of the antimicrobial activity of edible films, composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%) and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%), with silver nanoparticle (AgNP) incorporationat levels 5, 10 and 15% v/v. According to the results, the AgNP addition led to very high antimicrobial activity of both films, reducing by more than 96% the microbial growth of the Gram-negative bacterium Escherichia coli (E. coli) in all cases. On the other hand, by adding AgNPs to films, their thickness as well as oxygen and water vapor permeability decreased, while their transparency increased. Furthermore, the contribution of these specific edible films to preserve cherries under cold storage was investigated. All edible coatings resulted in an improvement of the fruit properties under consideration, and especially the color difference, hardness and total microbial load.

Keywords: antimicrobial activity; cherries; composite edible films; food packaging; silver nanoparticles.