Antioxidant Activity, Formulation, Optimization and Characterization of an Oil-in-Water Nanoemulsion Loaded with Lingonberry (Vaccinium vitis-idaea L.) Leaves Polyphenol Extract

Foods. 2023 Nov 24;12(23):4256. doi: 10.3390/foods12234256.

Abstract

The active ingredients in lingonberry leaves and their beneficial properties to the human body have been well confirmed. In order to improve the stability and antioxidant activity of the active ingredients in lingonberry leaves, the response surface optimization method was used to prepare an oil-in-water nanoemulsion of polyphenol extract from lingonberry leaves. The active components in the extract were analyzed by ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UPLC-TQ-MS), and bioactive compounds such as apigenin, sorbitol, and hesperidin were mainly found. Nanoemulsion droplets of 120 nm in diameter were prepared using ultrasonic emulsification. The optimal nanoemulsion formulation was determined through rigorous testing, and it was determined to be 10% (w/w) lingonberry extract and 20% (w/w) medium chain triglyceride (MCT). Additionally, a surfactant mixture was used, which combined soy protein isolate (SPI) and whey protein isolate (WPI) at 4% (w/w). The preparation method utilized ultrasonic emulsification, applying an ultrasonic power of 360 W for a duration of 300 s. The antioxidant activity (DPPH inhibition rate, ABTS inhibition rate and total reducing power) of the lingonberry nanoemulsion was significantly higher than that of the lingonberry polyphenol (LBP) extract. The nanoemulsion prepared using the optimal formulation had an entrapping efficiency of 73.25% ± 0.73% and a diameter of 114.52 ± 0.015 nm, with a satisfactory particle size of nanoscale and a PDI of 0.119 ± 0.065, demonstrating good stability of the emulsion.

Keywords: antioxidant activity; delivery system; lingonberry (Vaccinium vitis-idaea L.); nanoemulsion; response surface methodology.

Grants and funding

This work was supported by the National Natural Science Foundation of China (31170510), the National College Students’ innovation and entrepreneurship training program (202210225104), the National Science Foundation of Heilongjiang Province, China (LH 2020C035), the Fundamental Research Funds for the Central Universities (2572019BA09), and the China Postdoctoral Science Foundation Project (2016M600239) for their support. The authors thank these institutions for their contributions to this study.