A generative model of electrophysiological brain responses to stimulation

Elife. 2024 Jan 17:12:RP87729. doi: 10.7554/eLife.87729.

Abstract

Each brain response to a stimulus is, to a large extent, unique. However this variability, our perceptual experience feels stable. Standard decoding models, which utilise information across several areas to tap into stimuli representation and processing, are fundamentally based on averages. Therefore, they can focus precisely on the features that are most stable across stimulus presentations. But which are these features exactly is difficult to address in the absence of a generative model of the signal. Here, I introduce genephys, a generative model of brain responses to stimulation publicly available as a Python package that, when confronted with a decoding algorithm, can reproduce the structured patterns of decoding accuracy that we observe in real data. Using this approach, I characterise how these patterns may be brought about by the different aspects of the signal, which in turn may translate into distinct putative neural mechanisms. In particular, the model shows that the features in the data that support successful decoding-and, therefore, likely reflect stable mechanisms of stimulus representation-have an oscillatory component that spans multiple channels, frequencies, and latencies of response; and an additive, slower response with a specific (cross-frequency) relation to the phase of the oscillatory component. At the individual trial level, still, responses are found to be highly variable, which can be due to various factors including phase noise and probabilistic activations.

Keywords: M/EEG; brain responses; genephys; generative model; human; neural variability; neuroscience; stimulus processing.

MeSH terms

  • Algorithms
  • Brain*
  • Emotions*
  • Mental Processes