Rapid-reaction kinetics of the bifurcating NAD+-dependent NADPH:ferredoxin oxidoreductase NfnI from Pyrococcus furiosus

J Biol Chem. 2023 Dec;299(12):105403. doi: 10.1016/j.jbc.2023.105403. Epub 2023 Oct 29.

Abstract

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 μM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.

Keywords: electron bifurcation; electron paramagnetic resonance; electron transfer; flavoprotein.

MeSH terms

  • Archaeal Proteins* / metabolism
  • Ferredoxins* / metabolism
  • Kinetics
  • NAD / metabolism
  • NADP / metabolism
  • Oxidation-Reduction
  • Oxidoreductases* / metabolism
  • Pyrococcus furiosus* / enzymology

Substances

  • Ferredoxins
  • NAD
  • NADP
  • Oxidoreductases
  • Archaeal Proteins