Identification and validation of anoikis-related lncRNAs for prognostic significance and immune microenvironment characterization in ovarian cancer

Aging (Albany NY). 2024 Jan 15;16(2):1463-1483. doi: 10.18632/aging.205439. Epub 2024 Jan 15.

Abstract

Anoikis, a form of apoptotic cell death resulting from inadequate cell-matrix interactions, has been implicated in tumor progression by regulating tumor angiogenesis and metastasis. However, the potential roles of anoikis-related long non-coding RNAs (arlncRNAs) in the tumor microenvironment are not well understood. In this study, five candidate lncRNAs were screened through least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis based on differentially expressed lncRNAs associated with anoikis-related genes (ARGs) from TCGA and GSE40595 datasets. The prognostic accuracy of the risk model was evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) analyses revealed significant differences in immune-related hallmarks and signal transduction pathways between the high-risk and low-risk groups. Additionally, immune infiltrate analysis showed significant differences in the distribution of macrophages M2, follicular T helper cells, plasma cells, and neutrophils between the two risk groups. Lastly, silencing the expression of PRR34_AS1 and SPAG5_AS1 significantly increased anoikis-induced cell death in ovarian cancer cells. In conclusion, our study constructed a risk model that can predict clinicopathological features, tumor microenvironment characteristics, and prognosis of ovarian cancer patients. The immune-related pathways identified in this study may offer new treatment strategies for ovarian cancer.

Keywords: anoikis; immune microenvironment; lncRNA; ovarian cancer; risk model.

MeSH terms

  • Anoikis / genetics
  • Cell Cycle Proteins
  • Female
  • Humans
  • Ovarian Neoplasms* / genetics
  • Prognosis
  • RNA, Long Noncoding* / genetics
  • Tumor Microenvironment / genetics

Substances

  • RNA, Long Noncoding
  • SPAG5 protein, human
  • Cell Cycle Proteins