Divergent Reactivity of 1,2,3-Benzotriazin-4(3 H)-ones: Photocatalytic Synthesis of 3-Substituted Isoindolinones Achieved through a Nitrogen-Mediated Hydrogen Atom Shift

J Org Chem. 2024 Feb 2;89(3):1836-1845. doi: 10.1021/acs.joc.3c02545. Epub 2024 Jan 16.

Abstract

A regioselective visible-light-mediated denitrogenative alkene insertion of 1,2,3-benzotriazin-4(3H)-ones was developed to access 3-substituted isoindolinones, an important structural motif present in many biologically active molecules and natural products. Notably, divergent reactivity was achieved by switching from reported nickel catalysis (where C3-substituted 3,4-dihydroisoquinolin-1(2H)-ones form) to photocatalysis, where photocatalytic denitrogenation and a subsequent nitrogen-mediated hydrogen atom shift lead to exclusive 3-substituted isoindolinone formation. The developed photocatalytic reaction is compatible with activated terminal alkenes and cyclic α,β-unsaturated esters and ketones, with wide functional group tolerance for N-substitution of the 1,2,3-benzotriazin-4(3H)-ones. The utility of this procedure is highlighted by a gram-scale synthesis and postsynthetic amidation. To understand the origin of this unique product selectivity, experimental and computational mechanistic studies were performed.