Minimizing false positives for CTC identification

Anal Chim Acta. 2024 Feb 1:1288:342165. doi: 10.1016/j.aca.2023.342165. Epub 2023 Dec 18.

Abstract

Background: Cancer is a leading cause of death worldwide, with metastasis playing a significant role. Circulating Tumour Cells (CTCs) can provide important real-time insights into tumour heterogeneity and clonal evolution, making them an important tool for early diagnosis and patient monitoring. Isolated CTCs are typically identified by immunocytochemistry using positive biomarkers (cytokeratin) and exclusion biomarkers (CD45). However, some white blood cell (WBC) populations can express low levels of CD45 and stain non-specifically for cytokeratin, increasing their risk of misclassification as CTCs. There is a clear need to improve CTC detection and enumeration criteria to unequivocally eliminate interfering WBC populations.

Results: This study showed that, indeed, some granulocyte subpopulations expressed low levels of CD45 and stained non-specifically for cytokeratin, misidentifying them as CTCs. These same cells, however, strongly expressed CD15, allowing them to be identified as WBCs and excluded from CTC classification. Flow cytometry confirmed the specificity of the CD15 antibody for the granulocyte subpopulation. False positives were considerably reduced from 25 % to 0.2 % by double exclusion, combining a CD15 antibody with a highly specific CD45 antibody. Furthermore, complete elimination of potential false positives was achieved using double exclusion in combination with improved selection of cytokeratin antibody. The study emphasises the importance of a robust exclusion criteria and high antibody specificity in CTC immuno-assays for accurate identification of CTC candidates and thorough exclusion of interfering WBC subpopulations.

Significance: This study demonstrated how misidentifying a granulocyte subpopulation can lead to inaccurate CTC evaluation. However, sensitivity and specificity of CTC identification may be improved by using high-performing antibodies and by including a second exclusion biomarker, in turn, allowing for a more comprehensive clinical application of CTCs.

Keywords: Circulating tumour cells; Granulocytes; Liquid biopsy; Microfluidics.

MeSH terms

  • Biomarkers, Tumor*
  • Flow Cytometry
  • Humans
  • Keratins
  • Neoplastic Cells, Circulating* / pathology

Substances

  • Biomarkers, Tumor
  • Keratins