Bacterial carbonic anhydrase-induced carbonates mitigate soil erosion in biological soil crusts

J Environ Manage. 2024 Feb 14:352:120085. doi: 10.1016/j.jenvman.2024.120085. Epub 2024 Jan 13.

Abstract

Soil erosion is a significant environmental issue worldwide, particularly in island regions where land resources are exceedingly scarce. Biological soil crusts play a crucial role in mitigating soil erosion, yet the precise effect and mechanism of biological soil crusts against erosion remain ambiguous. In this study, biological soil crusts at various developmental stages from a tropical coral island in the South China Sea were chosen to investigate the role of carbonic anhydrase in mitigating erosion. A cohesive strength meter, real-time quantitative PCR, and 16S rRNA gene high-throughput sequencing were employed to assess variations in soil antiscouribility as well as bacterial abundance and composition during the formation and development of biological soil crusts. Scanning electron microscopy was utilized to detect carbonates induced by bacterial carbonic anhydrase and elucidate their role in the solidification of sand particles. The findings indicate that the formation and development of biological soil crusts significantly enhance anti-scouribility. Comparison to those of bare coral sand, the shear stress increased from 0.35 to 1.11 N/m2 in the dark biocrusts. Moreover, significantly elevated carbonic anhydrase activity was observed in biological soil crusts, demonstrating a positive correlation with antiscouribility. In addition, there was a significant increase in bacterial abundance within the biological soil crusts. The enrichment of Cyanobacteriales and Chloroflexales potentially contributed to the increased carbonic anhydrase activity and antiscouribility. Furthermore, three cyanobacterial strains with carbonic anhydrase activity were isolated from biological soil crusts and subsequently confirmed to enhance sand solidification through microbial carbonate precipitation. This study presents initial evidence for the role of microbial carbonic anhydrase in enhancing the antiscouribility of biological soil crusts during their formation and development. These findings offer novel insights into the functional and mechanistic dimensions underlying the mitigation of soil erosion facilitated by biological soil crusts, which are valuable for implementing sustainable biorestoration and environmental management technologies to prevent soil erosion.

Keywords: Antiscouribility; Biological soil crusts; Carbonates; Carbonic anhydrase; Microbial community.

MeSH terms

  • Cyanobacteria* / genetics
  • RNA, Ribosomal, 16S / genetics
  • Sand
  • Soil Erosion
  • Soil Microbiology
  • Soil*

Substances

  • Soil
  • Sand
  • RNA, Ribosomal, 16S