MixSleepNet: A Multi-Type Convolution Combined Sleep Stage Classification Model

Comput Methods Programs Biomed. 2024 Feb:244:107992. doi: 10.1016/j.cmpb.2023.107992. Epub 2023 Dec 27.

Abstract

Background and objective: Sleep staging is an essential step for sleep disorder diagnosis, which is time-intensive and laborious for experts to perform this work manually. Automatic sleep stage classification methods not only alleviate experts from these demanding tasks but also enhance the accuracy and efficiency of the classification process.

Methods: A novel multi-channel biosignal-based model constructed by the combination of a 3D convolutional operation and a graph convolutional operation is proposed for the automated sleep stages using various physiological signals. Both the 3D convolution and graph convolution can aggregate information from neighboring brain areas, which helps to learn intrinsic connections from the biosignals. Electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG) and electrocardiogram (ECG) signals are employed to extract time domain and frequency domain features. Subsequently, these signals are input to the 3D convolutional and graph convolutional branches, respectively. The 3D convolution branch can explore the correlations between multi-channel signals and multi-band waves in each channel in the time series, while the graph convolution branch can explore the connections between each channel and each frequency band. In this work, we have developed the proposed multi-channel convolution combined sleep stage classification model (MixSleepNet) using ISRUC datasets (Subgroup 3 and 50 random samples from Subgroup 1).

Results: Based on the first expert's label, our generated MixSleepNet yielded an accuracy, F1-score and Cohen kappa scores of 0.830, 0.821 and 0.782, respectively for ISRUC-S3. It obtained accuracy, F1-score and Cohen kappa scores of 0.812, 0.786, and 0.756, respectively for the ISRUC-S1 dataset. In accordance with the evaluations conducted by the second expert, the comprehensive accuracies, F1-scores, and Cohen kappa coefficients for the ISRUC-S3 and ISRUC-S1 datasets are determined to be 0.837, 0.820, 0.789, and 0.829, 0.791, 0.775, respectively.

Conclusion: The results of the performance metrics by the proposed method are much better than those from all the compared models. Additional experiments were carried out on the ISRUC-S3 sub-dataset to evaluate the contributions of each module towards the classification performance.

Keywords: 3D convolutional networks; graph convolutional networks; sleep stage classification.

MeSH terms

  • Electroencephalography / methods
  • Electrooculography / methods
  • Sleep Stages* / physiology
  • Sleep*
  • Time Factors