Influence of age, socioeconomic status, and location on the infant gut resistome across populations

Gut Microbes. 2024 Jan-Dec;16(1):2297837. doi: 10.1080/19490976.2023.2297837. Epub 2024 Jan 13.

Abstract

Antibiotic resistance is a growing global concern, with many ecological niches showing a high abundance of antibiotic resistance genes (ARGs), including the human gut. With increasing indications of ARGs in infants, this study aims to investigate the gut resistome profile during early life at a wider geographic level. To achieve this objective, we utilized stool samples data from 26 studies involving subjects aged up to 3 years from different geographical locations. The 32,277 Metagenome Assembled Genomes (MAGs) previously generated from shotgun sequencing reads from these studies were used for resistome analysis using RGI with the CARD database. This analysis showed that the distribution of ARGs across the countries in our study differed in alpha diversity and compositionally. In particular, the abundance of ARGs was found to vary by socioeconomic status and healthcare access and quality (HAQ) index. Surprisingly, countries having lower socioeconomic status and HAQ indices showed lower ARG abundance, which was contradictory to previous reports. Gram-negative genera, including Escherichia, Enterobacter, Citrobacter, and Klebsiella harbored a particularly rich set of ARGs, which included antibiotics that belong to the Reserve, Access or Watch category, such as glycopeptides, fluoroquinolones, sulfonamides, macrolides, and tetracyclines. We showed that ARG abundance exponentially decreased with time during the first 3 years of life. Many highly ARG-abundant species including Escherichia, Klebsiella, Citrobacter species that we observed are well-known pathobionts found in the infant gut in early life. High abundance of these species and a diverse range of ARGs in their genomes point toward the infant gut, acting as an ARG reservoir. This is a concern and further studies are needed to examine the causal effect and its consequences on long-term health.

Keywords: Infant gut resistance; meta-analysis; resistome; shotgun sequencing.

MeSH terms

  • Aged
  • Anti-Bacterial Agents / pharmacology
  • Drug Resistance, Microbial
  • Escherichia / genetics
  • Gastrointestinal Microbiome* / genetics
  • Genes, Bacterial*
  • Humans
  • Infant
  • Social Class

Substances

  • Anti-Bacterial Agents