The high impact of zinc chromium oxide nanocombs on development of larvicidal and antimicrobial performance

BMC Chem. 2024 Jan 12;18(1):11. doi: 10.1186/s13065-023-01108-9.

Abstract

Zinc chromium oxide (Cr/ZnO, 5wt.%) was prepared by a facile chemical co-precipitation route. The structure, composition, and chemical bonding were analyzed using X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) indicating that chromium ions were integrated the host framework to form Cr/ZnO nanocomposite. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) micrographs showed comb-shaped nanoparticles with an average size 20 nm and large surface area. The energy gap of the thin films was estimated from T% and R% measurements which exhibit a strong optical absorption edge close to the visible spectrum. The insecticidal activity of the synthesized nanocombs against C. pipiens larvae was evaluated with LC50 (30.15 ppm) and LC90 (100.22 ppm). Besides, the nanocomposite showed high antibacterial performance against gram-positive bacteria (Bacillus subtilis) and gram-negative bacteria (Proteus vulgaris) with inhibition zones 21.9 and 19 mm, respectively.

Keywords: Bactericidal; Cr/ZnO nanocombs; Energy gap; Larvicidal; Ultrastructure alteration.