Edaravone alleviated allergic airway inflammation by inhibiting oxidative stress and endoplasmic reticulum stress

Eur J Pharmacol. 2024 Mar 5:966:176317. doi: 10.1016/j.ejphar.2024.176317. Epub 2024 Jan 10.

Abstract

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.

Keywords: Asthma; CD4(+) T cells; Endoplasmic reticulum stress; Oxidative stress; Type 2 innate lymphoid cells.

MeSH terms

  • Animals
  • Asthma* / metabolism
  • Cytokines / metabolism
  • Disease Models, Animal
  • Edaravone / pharmacology
  • Edaravone / therapeutic use
  • Endoribonucleases / metabolism
  • Hydrogen Peroxide / pharmacology
  • Immunity, Innate*
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Lung
  • Lymphocytes
  • Mice
  • Oxidants / pharmacology
  • Oxidative Stress
  • Protein Serine-Threonine Kinases / metabolism
  • Pyroglyphidae / metabolism

Substances

  • Edaravone
  • Cytokines
  • Endoribonucleases
  • Hydrogen Peroxide
  • Protein Serine-Threonine Kinases
  • Oxidants