Fe-doped g-C3N4 with duel active sites for ultrafast degradation of organic pollutants via visible-light-driven photo-Fenton reaction: Insight into the performance, kinetics, and mechanism

Chemosphere. 2024 Mar:351:141135. doi: 10.1016/j.chemosphere.2024.141135. Epub 2024 Jan 10.

Abstract

The photo-Fenton process provides a sustainable and cost-effective strategy for removing refractory organic contaminants in wastewater. Herein, a high-efficient Fe-doped g-C3N4 photocatalyst (Fe@CN10) with a unique 3D porous mesh structure was prepared by one-pot thermal polymerization for ultrafast degradation of azo dyes, antibiotics, and phenolic acids in heterogeneous photo-Fenton systems under visible light irradiation. Fe@CN10 exhibited a synergy between adsorption-degradation processes due to the co-existence of Fe3C and Fe3N active sites. Specifically, Fe3C acted as an adsorption site for pollutant and H2O2 molecules, while Fe3N acted as a photocatalytic active site for the high-efficient degradation of MO. Resultingly, Fe@CN10 showed a photocatalytic degradation rate of MO up to 140.32 mg/L min-1. The dominant ROS contributed to the removal of MO in the photo-Fenton pathway was hydroxyl radical (•OH). Surprisingly, as the key reactive species, singlet oxygen (1O2) generated from superoxide radical (•O2-) also efficiently attacked MO in a photo-self-Fenton pathway. Additionally, sponge/Fe@CN10 was prepared and filled in the continuous flow reactors for nearly 100% degradation of MO over 150 h when treating artificial organic wastewater. This work provided a facile route to prepare highly-active Fe-doped photocatalysts and develop a green photocatalytic system for wastewater treatment in the future.

Keywords: Degradation; Fe-doped g-C3N4 (Fe@CN); Free radicals; Nonradical electron transfer; Photo-Fenton catalysis; Synergy.

MeSH terms

  • Catalysis
  • Catalytic Domain
  • Environmental Pollutants*
  • Hydrogen Peroxide* / chemistry
  • Light
  • Wastewater

Substances

  • Hydrogen Peroxide
  • Wastewater
  • Environmental Pollutants