CREB3L1/OASIS: cell cycle regulator and tumor suppressor

FEBS J. 2024 Jan 12. doi: 10.1111/febs.17052. Online ahead of print.

Abstract

Cell cycle checkpoints detect DNA errors, eventually arresting the cell cycle to promote DNA repair. Failure of such cell cycle arrest causes aberrant cell proliferation, promoting the pathogenesis of multiple diseases, including cancer. Endoplasmic reticulum (ER) stress transducers activate the unfolded protein response, which not only deals with unfolded proteins in ER lumen but also orchestrates diverse physiological phenomena such as cell differentiation and lipid metabolism. Among ER stress transducers, cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1) [also known as old astrocyte specifically induced substance (OASIS)] is an ER-resident transmembrane transcription factor. This molecule is cleaved by regulated intramembrane proteolysis, followed by activation as a transcription factor. OASIS is preferentially expressed in specific cells, including astrocytes and osteoblasts, to regulate their differentiation. In accordance with its name, OASIS was originally identified as being upregulated in long-term-cultured astrocytes undergoing cell cycle arrest because of replicative stress. In the context of cell cycle regulation, previously unknown physiological roles of OASIS have been discovered. OASIS is activated as a transcription factor in response to DNA damage to induce p21-mediated cell cycle arrest. Although p21 is directly induced by the master regulator of the cell cycle, p53, no crosstalk occurs between p21 induction by OASIS or p53. Here, we summarize previously unknown cell cycle regulation by ER-resident transcription factor OASIS, particularly focusing on commonalities and differences in cell cycle arrest between OASIS and p53. This review also mentions tumorigenesis caused by OASIS dysfunctions, and OASIS's potential as a tumor suppressor and therapeutic target.

Keywords: DNA damage; OASIS; astrocyte; cell cycle arrest; glioblastoma; methylation; p21; p53; tumor suppressor; tumorigenesis.

Publication types

  • Review