Intranasal Radioiodinated Ferulic Acid Polymeric Micelles as the First Nuclear Medicine Imaging Probe for ETRA Brain Receptor

Curr Radiopharm. 2024 Jan 11. doi: 10.2174/0118744710269885231113070356. Online ahead of print.

Abstract

Introduction: The aim of this work was to prepare a selective nuclear medicine imaging probe for the Endothelin 1 receptor A in the brain.

Material and methods: Ferulic acid (an ETRA antagonist) was radiolabeled using 131I by direct electrophilic substitution method. The radiolabeled ferulic acid was formulated as polymeric micelles to allow intranasal brain delivery. Biodistribution was studied in Swiss albino mice by comparing brain uptake of 131I-ferulic acid after IN administration of 131I-ferulic acid polymeric micelles, IN administration of 131I-ferulic acid solution and IV administration of 131I-ferulic acid solution.

Results: Successful radiolabeling was achieved with an RCY of 98 % using 200 μg of ferulic acid and 60 μg of CAT as oxidizing agents at pH 6, room temperature and 30 min reaction time. 131I-ferulic acid polymeric micelles were successfully formulated with the particle size of 21.63 nm and polydispersity index of 0.168. Radioactivity uptake in the brain and brain/blood uptake ratio for I.N 131I-ferulic acid polymeric micelles were greater than the two other routes at all periods.

Conclusion: Our results provide 131I-ferulic acid polymeric micelles as a hopeful nuclear medicine tracer for ETRA brain receptor.

Keywords: 131I; ETRA receptor; Ferulic acid; Imaging probe.; Polymeric micelles; Radiolabeling.