Upconversion 3D Bioprinting for Noninvasive In Vivo Molding

Adv Mater. 2024 Apr;36(14):e2310617. doi: 10.1002/adma.202310617. Epub 2024 Jan 16.

Abstract

Tissue engineered bracket materials provide essential support for the physiological protection and therapeutics of patients. Unfortunately, the implantation process of such devices poses the risk of surgical complications and infection. In this study, an upconversion nanoparticles (UCNPs)-assisted 3D bioprinting approach is developed to realize in vivo molding that is free from invasive surgery. Reasonably designed UCNPs, which convert near-infrared (NIR) photons that penetrate skin tissues into blue-violet emission (300-500 nm), induce a monomer polymerization curing procedure in vivo. Using a fused deposition modeling coordination framework, a precisely predetermined trajectory of the NIR laser enables the manufacture of implantable medical devices with tailored shapes. A proof of the 3D bioprinting of a noninvasive fracture fixation scaffold is achieved successfully, thus demonstrating an entirely new method of in vivo molding for biomedical treatment.

Keywords: 3D bioprinting; multi‐photon polymerization hydrogels; noninvasive molding; upconversion nanoparticles.

MeSH terms

  • Bioprinting*
  • Humans
  • Light
  • Nanoparticles*
  • Prostheses and Implants