IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells

Blood Adv. 2024 Mar 12;8(5):1234-1249. doi: 10.1182/bloodadvances.2023011338.

Abstract

JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1β (IL-1β)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1β-/- or IL-1R1-/- mice. To study the role of IL-1β and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1β in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1β levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1β levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1β antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1β as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Bone Marrow Transplantation
  • Hematopoietic Stem Cells
  • Interleukin-1beta
  • Mice
  • Myeloproliferative Disorders* / genetics

Substances

  • Interleukin-1beta
  • Jak2 protein, mouse
  • IL1B protein, mouse