Microbial Biomineralization of Alkaline Earth Metal Carbonates on 3D-Printed Surfaces

ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6327-6336. doi: 10.1021/acsami.3c13665. Epub 2024 Jan 11.

Abstract

The biomineralizing bacterium Sporosarcina pasteurii has attracted considerable interest in the area of geotechnical engineering due to its ability to induce extracellular mineralization. The presented study investigated S. pasteurii's potential to induce the mineralization of alkali-earth metal carbonate coatings on different polymeric 3D-printed flat surfaces fabricated by different additive manufacturing methods. The use of calcium, barium, strontium, or magnesium ions as the source resulted in the formation of vaterite (CaCO3), witherite (BaCO3), strontianite (SrCO3), and nesquehonite MgCO3·3H2O, respectively. These mineral coatings generally exhibit a compact, yet variable, thickness and are composed of agglomerated microparticles similar to those formed in solution. However, the mechanism behind this clustering remains unclear. The thermal properties of these biologically induced mineral coatings differ from their inorganic counterpart, highlighting the unique characteristics imparted by the biomineralization process. This work seeks to capitalize on the bacterium S. pasteurii's ability to form an alkali-earth metal carbonate coating to expand beyond its traditional use in geoengineering applications. It lays the ground for a novel integration of biologically induced mineralization of single or multilayered and multifunctional coating materials, for example, aerospace applications.

Keywords: 3D printing; alkali earth metal; bacteria; biomineralization; coatings.

MeSH terms

  • Biomineralization*
  • Calcium Carbonate
  • Carbonates*
  • Minerals
  • Printing, Three-Dimensional

Substances

  • Carbonates
  • Calcium Carbonate
  • Minerals