Properties of High-Entropy Fe30Co20Ni20Mn20Al10 Alloy Produced by High-Energy Ball Milling

Materials (Basel). 2023 Dec 31;17(1):234. doi: 10.3390/ma17010234.

Abstract

A high-entropy Fe30Co20Ni20Mn20Al10 (at%) alloy with a face-centered cubic (FCC) crystalline phase was produced through mechanical alloying. This study examined the development of its phases, microstructure, morphology, and magnetic characteristics. Scanning electron microscopy (SEM) was applied to assess the sample morphology in relation to milling times. The changes that the material underwent during milling were investigated using X-ray diffraction. The milling time affected the phase transformation. A single FCC solid solution (crystallite size = 12 nm) was found after 50 h of milling. Additionally, the magnetic characteristics were examined and shown to be associated with microstructural changes. The powder mixture exhibited behavior consistent with soft magnetics, with an Hc value of 8 Am-1 and an Ms value of 165 emu/g. The excellent soft magnetic characteristic may be related to the stability of the FCC phase, which was generated following a 30 h milling process. In addition, the low value of Ms may have originated from the presence of Al atoms in the solid solution and the development of large densities of interfaces and crystal defects.

Keywords: HEA alloy; X-ray diffraction; magnetic characteristics; mechanical alloying; microstructure.

Grants and funding

This research received no external funding.