Propylene Production via Oxidative Dehydrogenation of Propane with Carbon Dioxide over Composite MxOy-TiO2 Catalysts

Nanomaterials (Basel). 2023 Dec 28;14(1):86. doi: 10.3390/nano14010086.

Abstract

The CO2-assisted oxidative dehydrogenation of propane (ODP) was investigated over titania based composite metal oxides, 10% MxOy-TiO2 (M: Zr, Ce, Ca, Cr, Ga). It was found that the surface basicity of composite metal oxides was significantly higher than that of bare TiO2 and varied in a manner which depended strongly on the nature of the MxOy modifier. The addition of metal oxides on the TiO2 surface resulted in a significant improvement of catalytic performance induced by a synergetic interaction between MxOy and TiO2 support. Propane conversion and propylene yield were strongly influenced by the nature of the metal oxide additive and were found to be superior for the Cr2O3-TiO2 and Ga2O3-TiO2 catalysts characterized by moderate basicity. The reducibility of the latter catalysts was significantly increased, contributing to the improved catalytic performance. This was also the case for the surface acidity of Ga2O3-TiO2 which was found to be higher compared with Cr2O3-TiO2 and TiO2. A general trend was observed whereby catalytic performance increased significantly with decreasing the primary crystallite size of TiO2. DRIFTS studies conducted under reaction conditions showed that the adsorption/activation of CO2 was favored on the surface of composite metal oxides. This may be induced by the improved surface basicity observed with the MxOy addition on the TiO2 surface. The Ga2O3 containing sample exhibited sufficient stability for about 30 h on stream, indicating that it is suitable for the production of propylene through ODP with CO2 reaction.

Keywords: Ca; Ce; Cr; Ga; TiO2; Zr; composite metal oxides; oxidative dehydrogenation of propane with CO2; surface basicity.