Flexible Film Bulk Acoustic Wave Filter Based on Poly(vinylidene fluoride-trifluorethylene)

Polymers (Basel). 2024 Jan 3;16(1):150. doi: 10.3390/polym16010150.

Abstract

Poly(vinylidene fluoride-trifluorethylene) (P(VDF-TrFE)) has promising potential applications in radio-frequency filters due to their excellent piezoelectric properties, flexibility, and stability. In this paper, a flexible film bulk acoustic wave filter is investigated based on P(VDF-TrFE) as piezoelectric film. A new method based on three-step annealing is developed to efficiently remove the porosity inside the P(VDF-TrFE) films so as to improve its properties. The obtained film achieved high β-phase content beyond 80% and a high piezoelectric coefficient of 27.75 pm/V. Based on the low porosity β-phase films, a flexible wide-band RF filter is designed, which consists of a bulk acoustic wave resonator and lumped inductor-capacitor elements as a hybrid configuration. The resonator sets the filter's center frequency, while the lumped LC-based matching network extends the bandwidth and enhances out-of-band rejection. The testing results of the proposed wide-band filter show its good performance, with 12.5% fractional bandwidth and an insertion loss of 3.1 dB. To verify the possibility of folding and stacking the flexible bulk acoustic wave devices for high-density multi-filter integration in MIMO communication, bending tests of the filter are also conducted with the bending strain range up to 5500 με. The testing results show no noticeable performance degradation after four bending cycles. This work demonstrates the potential of β-phase P(VDF-TrFE) bulk acoustic wave filters to expand the scope of future flexible radio-frequency filter applications.

Keywords: P(VDF-TrFE); RF filters; film bulk acoustic resonators; flexible electronics.