Identification of isobenzofuranone derivatives as promising antidiabetic agents: Synthesis, in vitro and in vivo inhibition of α-glucosidase and α-amylase, computational docking analysis and molecular dynamics simulations

Int J Biol Macromol. 2024 Feb;259(Pt 2):129241. doi: 10.1016/j.ijbiomac.2024.129241. Epub 2024 Jan 8.

Abstract

Diabetes mellitus, one of the major health challenges of the 21st century, is associated with numerous biomedical complications including retinopathy, neuropathy, nephropathy, cardiovascular diseases and liver disorders. To control the chronic hyperglycemic condition, the development of potential inhibitors of drug targets such as α-glucosidase and α-amylase remains a promising strategy and focus of continuous efforts. Therefore, in the present work, a concise library of isobenzofuranone derivatives (3a-q) was designed and synthesized using Suzuki-Miyaura cross-coupling approach. The biological potential of these heterocyclic compounds against carbohydrate-hydrolyzing enzymes; α-glucosidase and α-amylase, was examined. In vitro inhibitory results demonstrated that the tested isobenzofuranones were considerably more effective and potent inhibitors than the standard drug, acarbose. Compound 3d having an IC50 value of 6.82 ± 0.02 μM was emerged as the lead candidate against α-glucosidase with ⁓127-folds strong inhibition than acarbose. Similarly, compound 3g demonstrated ⁓11-folds higher inhibition strength against α-amylase when compared with acarbose. Both compounds were tested in vivo and results demonstrate that the treatment of diabetic rats with α-amylase inhibitor show more pronounced histopathological normalization in kidney and liver than with α-glucosidase inhibitor. The Lineweaver-Burk plot revealed an uncompetitive mode of inhibition for 3d against α-glucosidase whereas compound 3g exhibited mixed inhibition against α-amylase. Furthermore, in silico molecular docking and dynamics simulations validated the in vitro data for these compounds whereas pharmacokinetics profile revealed the druglike properties of potent inhibitors.

Keywords: Diabetes; Heterocyclic drugs; In vivo activity; Molecular dynamics simulations; Suzuki-Miyaura cross-coupling; α-Amylase; α-Glucosidase.

MeSH terms

  • Acarbose
  • Animals
  • Diabetes Mellitus, Experimental* / drug therapy
  • Glycoside Hydrolase Inhibitors / pharmacology
  • Hypoglycemic Agents* / pharmacology
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Rats
  • alpha-Amylases
  • alpha-Glucosidases / metabolism

Substances

  • Hypoglycemic Agents
  • Acarbose
  • alpha-Glucosidases
  • alpha-Amylases
  • Glycoside Hydrolase Inhibitors